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Luminescence spectra of quantum dots in microcavities. 1. Bosons
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We provide a unified theory of luminescence spectra of coupled light-matter systems realized with semi-
conductor heterostructures in microcavities, encompassing (i) the spontaneous emission case, where the system
decays from a prepared (typically pure) initial state, and (ii) luminescence in the presence of a continuous
incoherent pump. We show how, by provoking a self-consistent quantum state, the pump considerably alters

the emission spectra, even at vanishing intensities. The main outcome of our analysis is to unambiguously
identify strong coupling in situations where it appears in disguise or only seems to appear. Here, we consider
bosonic matter fields, in which case fully analytical solutions can be obtained. This describes the case of
quantum wells or large quantum dots, or the limit of low excitation where the probability to have particles in

the system remains much smaller than one.
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I. INTRODUCTION

The dynamics of an optical emitter changes drastically
when it is placed in a cavity. The cavity alters the density of
states of optical modes, and therefore increases or inhibits
interactions with the emitter. The effect was first put to use
by Purcell in nuclear magnetic resonance for the practical
purpose of thermalizing spins at radio frequencies, by bring-
ing down their relaxation time from =~10*' s to a few
minutes.! Kleppner applied the same idea in the opposite
way to increase the relaxation time of an excited atom, i.e.,
to inhibit its spontaneous emission (SE).> The emitter, which
in the case of Purcell was sought to be resonant with the
cavity mode to increase the photon density of states with
respect to the vacuum, was in the case of Kleppner put out of
resonance, namely, in a photonic gap, where the photon den-
sity of states is smaller than in vacuum. This tuning of the
relaxation time of an emitter placed in a cavity, now known
as the Purcell effect, has many potential technological appli-
cations; one of the most compelling is the decrease in the
lasing threshold. The effect, which had first been actively
looked for with atoms in cavities,® was therefore also inten-
sively (and more recently) pursued in the solid state, more
prone for massive technological implementations. Semicon-
ductor heterostructures are the state-of-the-art arena for this
purpose. They allow one to engineer, with an ever rising
control, the solid-state counterpart of the atomic system to
match or isolate their excitation spectra and thus control their
behavior. Typical examples are quantum dots (QDs) placed
in cavities made in micropillars, microdisks, or photonic
crystals, where Purcell inhibition has been distinctly
demonstrated.*> A few reviews have appeared on this
topic.®’ In this paper, we shall be concerned chiefly with the
observed spectra of emission of such an emitter placed in a
cavity. In the regime where the effect of the cavity is to
lengthen or shorten the lifetime of the excitation, the conse-
quence in the optical spectra is to narrow or broaden the line,
respectively.

In the description of the Purcell effect, the possible reab-
sorption of the photon by the emitter is so weak that it can be

1098-0121/2009/79(23)/235325(17)

235325-1

PACS number(s): 42.50.Ct, 78.67.Hc, 42.55.Sa, 32.70.Jz

neglected. It is responsible for the energy shift known as the
Lamb shift that, in quantum electrodynamics, is interpreted
as the perturbative influence of virtual photons emitted and
reabsorbed by the emitter. In the case of inhibition of the
spontaneous emission, this shift is indeed orders of magni-
tude smaller than the radiative broadening. In the case where
emission is enhanced, and the linewidth narrowed, the prob-
ability of reabsorption of a photon by the emitter becomes
closer to that of escaping the cavity, until the perturbative—
so-called weak coupling (WC)—regime breaks down and in-
stead strong coupling (SC) takes place. In this case, photons
emitted are then reflected by the mirrors and there is a higher
probability for their reabsorption by the atom than for their
leaking out of the cavity. A whole sequence of absorptions
and emissions can therefore take place, known as Rabi oscil-
lations. This regime is of greater interest, as it gives rise to
new quantum states of the light-matter coupled system, usu-
ally referred to as dressed states in atomic physics and as
polaritons in solid-state physics. Experimentally, SC is more
difficult to reach, as it requires a fine control of the quantum
coupling between the bare modes and in particular to reduce,
as much as possible, all the sources of dissipation. Theoreti-
cally, it is better dealt with by first getting rid of the dissipa-
tion, and starting with the strong-coupling Hamiltonian (h is
taken as 1 along the paper)

H=w,a'a+ w,b’b+gla'b+ab"), (1)

where a and b are the cavity photon and material excitation
field operators, respectively, with bare mode energies w, and
wy, coupled linearly with strength g. The photon operator is a
Bose annihilation operator, satisfying the usual commutation
rule [a,a’]=1. Depending on the model for the material ex-
citation, b is described by, typically, another harmonic oscil-
lator (linear model®) or a two-level system (Jaynes-
Cummings model®). Those are the most fundamental cases as
they describe material fields with Bose and Fermi statistics,
respectively. Possible extensions are a collection of harmonic
oscillators'? or of two-level systems,!! a three-level system,'?
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etc. This paper contains the first part of our work in which
we address exclusively the case where b also follows Bose
statistics and the energy of an excitation is independent of
the manifold. This is an important case for two reasons. The
first one is that in many relevant cases, the matter field is
indeed bosonic, such as the case of quantum wells, or large
quantum dots, at low density of excitations. The second rea-
son is that this case provides the limit for vanishing excita-
tions (linear limit) of all the other cases and is fully solvable
analytically. As such, this case serves as the backbone for the
qualitative understanding of SC. In the second part of this
work,'3 we investigate the case of fermionic behavior at
large pumping, more relevant when dealing with small QDs
that confine excitations and more prone to involve genuine
quantum mechanics as one quantum of excitation can alter
the system response. The drawback is that numerical compu-
tation is required in this case, and the discussion is therefore
of a somehow less fundamental character.

For the rest of the text, it is therefore understood that b is
also a Bose operator. For convenience, we shall refer to it as
the exciton operator, after the name of a bound electron-hole
pair in a semiconductor. Likewise, we shall prefer such ter-
minology as a QD rather than an atom, or polaritons, rather
than dressed states, etc. For most purposes, this is semantics
only and the results apply in a wide range of systems.

Equation (1) can be straightforwardly diagonalized for
bosonic modes, giving H=w;p'p+w;q"q, where

A 2
#+(3), @

wa+wb
wy = *
L

2

with new Bose operators p=cos fa+sin 6b and g=-sin fa

+cos 6b, determined by the mixing angle, 0=arctan[g/(%
024 (A2 ;

+Vg"+(3)?)], and the detuning

A=w,— wp. (3)

These new modes are the polaritons (or dressed states) with
quantum states |U)y=pT|vac)=cos 6]1,0)+sin 6|0,1) and |L)
=q'|vacy=—sin 6]1,0)+cos #|0,1), where |vac) is the
vacuum, |1,0) is the Fock state of one photon, and |0,1) is
the Fock state of one exciton. Polariton energies [in Eq. (2)]
do not depend on the manifold of excitation. This is a fun-
damental difference with the two-level description for the
exciton'? or with the inclusion of interactions.'*

The energies defined by Eq. (2) are displayed in Fig. 1
with dashed lines, on top of that of the bare modes, with
thick lines, as detuning is varied by changing the energy of
the emitter and keeping that of the cavity constant. The an-
ticrossing always keeps the upper mode, U, higher in energy
than the lower one, L, strongly admixing the light and matter
character of both particles. At resonance, this mixing is

maximal,
U 1
L \2

If the system is initially prepared as a bare state—which is
the natural picture when reaching the SC from the excited
state of an emitter—the dynamics is that of an oscillatory
transfer of energy between light and matter. In an empty

0,1) = [1,0)). (4)
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FIG. 1. (Color online) Solid black: bare energies of the cavity
photon (horizontal line) and of the exciton (tilted) as a function of
detuning A. Dashed black: eigenenergies of the system Hamil-
tonian, without dissipation nor pumping [Eq. (2)]. The excitonlike
state at large negative A has become a photonlike state at large
positive A, and vice versa. Around A=0, both modes are an admix-
ture of exciton and photon. Dotted blue: Correction of the eigenen-
ergies when pump and decay are taken into account for parameters
of point (c) in Fig. 8. Solid red: actual position of the observed
peaks in the photoluminescence (PL) spectra for the same param-
eters. For these parameters, the three descriptions of SC give the
same qualitative results.

cavity, the time evolution of the probability to have an exci-
ton when there was initially one (at 1=0) reads

0,1

e—th

0,1)> =sin* + cos* @
+2 sin? 6 cos?6 cos[(wy — w)t]. (5)

The probability oscillates between the bare modes at the so-
called Rabi frequency, given by the difference between the
polariton energies w;—w;. For convenience of notation, we
will deal in what follows with half of this quantity:

A 2
o+(5) ©

Wy — W,

R =
2

The emission spectrum of the system requires dissipation, as
it is an obvious practical requisite that the excitation should
eventually leak out of the system to be detected from the
outside [the energy spectrum of the system is given by Eq.
(2)]. Dissipation is intrinsic to the bare modes; both the cav-
ity photon and the exciton have a finite lifetime. In presence
of dissipation, the system is upgraded from a Hamiltonian
description, Eq. (1), to a Liouvillian description, with a quan-
tum dissipative master equation for the density matrix p de-
fined in the tensor product of the light and matter Hilbert
spaces H, and H,,"

dp=Lyp. (7)

The Liouvillian £, still contains the Hamiltonian dynamics
of SC but also takes into account the decays of both the
cavity and the emitter, with rates vy, and v, respectively,

Lp=ilp.H]+ 3 Zcpe ~ciep=pce).  (8)
c=a.,b

in which we have considered the temperature equal to 0. This
equation has been extensively studied,'® although not in its
most general form. The typical configuration addresses the
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case of resonance, w,=w;, with only one particular initial
condition, namely, the excited state of the emitter in an
empty cavity, and detecting the emission of the emitter itself.
All together, they describe the spontaneous emission of an
emitter placed into a cavity with which it enters into SC. This
has been the topical case for decades as this was the case of
experimental interest with atoms in cavities.

With the advent of SC in other systems, other configura-
tions start to be of interest. With a QD in a microcavity, the
detuning A between the modes, Eq. (3), is a crucial experi-
mental parameter, as it can be easily tuned and to a great
extent, for instance by applying a magnetic field or changing
the temperature. Also in this case, the detection is in the
optical mode of the cavity rather than the direct emission of
the exciton emission because the latter is awkward for vari-
ous technical reasons of a more or less fundamental character
(an example of a fundamental complication is that the emis-
sion is enhanced in the cavity mode and suppressed other-
wise, and the exciton lifetime is typically much longer, so the
exciton emission is much weaker; an example of a petty
technical complication, e.g., with a pillar microcavity, is that
the exciton detection should be made at an angle and, prac-
tically, a lot of samples are grown on the same substrate.
Both the substrates and other samples hinder the lateral ac-
cess to one given sample, whereas all are equally accessible
from above. Photonic crystals also present difficulties related
to their geometry). In our system where both modes are
bosonic, symmetry allows us to focus on the cavity emission
without loss of generality, as we can obtain the leaky exci-
tonic emission by simply exchanging indexes a,b (the spec-
trum could also have photon-exciton crossed terms that
could be computed in a similar way). When we shall turn to
the case of a fermionic matter field, where the exciton emis-
sion will become distinctly different and for that reason, im-
portant, we shall address exciton emission separately.'3

Regarding the initial condition, more general quantum
states can now be realized, at least in principle, by coherent
control, pulse shaping, or similar techniques. Additionally
and more importantly, the type of excitation of a cavity-
emitter system in a semiconductor is of a different character;
the excitation is typically injected by either a continuous-
wave (cw) laser far above resonance, creating electron-hole
pairs that relax incoherently to excite the QD in a continuous
flow of excitations, or by electrical pumping, as in lasers.
This pumping, which is of an incoherent nature typical of
semiconductor physics, brings many fundamental changes
into the problem that go beyond the mere generalization of
Eq. (8). Among the most obvious ones, let us already men-
tion that pure states of the like of Eq. (4) do not correspond
to the experimental reality. Instead, the system is maintained
in a mixed state with probabilities p(n) to realize the nth
excited state. In all cases, a steady state (SS) is imposed by
the interplay of pumping and decay. The Rabi oscillations of
the populations—that is, the coherent exchange of energy
between the modes—are washed out, regardless of the pho-
tonlike, excitonlike, or polaritonlike (eigenstate) character of
the density matrix.

There have been naturally many efforts and a large output
in the literature to describe theoretically light-matter cou-
pling in a semiconductor microcavity. A huge majority ad-
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dressed the spontaneous emission case partly because of the
precedent set up by the atomic case. First results were ob-
tained for polaritons in planar cavities, where SC was first
realized.!” Pau et al.'® described the spectra of microcavity
polaritons in the very strong-coupling regime (in a Lorentz-
ian limit). Savona et al.'® outlined the importance of which
measurement is being performed in assessing a Rabi split-
ting, deriving different expressions for the observed split-
tings in reflection, transmission, absorption, and photolumi-
nescence, which are ultimately related to the channel of
detection in the zero-dimensional (0D) problem.?’ In the
quantum dot case, Andreani et al.?! opened the field, relying
on the atomic theory.'® Their major contribution was the
analysis of the coupling strength g and the prediction of QDs
in microcavities as successful candidates for SC physics.
However, the expression for the luminescence spectrum,
which was taken straight from the atomic literature, con-
cerned the configuration of direct exciton emission, which is
not the canonical case of a semiconductor microcavity where
photons are detected through their leakage in the cavity
mode. This was addressed by Cui and Raymer,?> who com-
puted the spectra both in the forward and the side emission.
They also focused on the role of pure dephasing, which role
out of resonance was highlighted after their model? or with
a master equation.”* Based on the Green’s function approach,
Hughes and Yao also computed the spectral lines in both
geometries, but accounting for their interferences that, inter-
estingly, can give rise to a triplet structure in the cavity
emission.? Let us also mention, among the numerous recent
works on the SE of an excited state in a cavity, Aufféves et
al.?® and Inoue et al.,”” who gave an insightful description of
the resonances that appear in these systems, prone to inter-
ferences in peculiar configurations. All these results corre-
spond to the spontaneous emission of one excitation. We
postpone the overview of works that probe the higher mani-
folds of the Jaynes-Cummings to part II of this work.!'?
Here, we address both the emission spectra obtained in a
configuration of SE—where an initial state is prepared and
left to decay, as ruled by Egs. (7) and (8)—under its most
general setting, and the case of luminescence emission under
the action of a continuous and incoherent pumping that es-
tablishes a SS. We bring all the results under a common and
unified formalism and show how none of the cases fully
encompasses the other. We focus especially on the continu-
ous pumping case which endows the problem with self-
consistency in view of its initial state. The rest of this paper
is organized as follows. In Sec. II, we present the complete
model and we derive and discuss its equation of motion. In
Sec. III, we analyze the single-time dynamics. In Sec. IV, we
obtain fully analytically the main results in both of the cases
explicated above, this time focusing more on the two-time
dynamics, which Fourier transform gives the luminescence
spectra. In Sec. V, we discuss the mathematical results de-
rived in the two previous sections, accentuating the physical
picture and relying on particular cases for illustration. In this
section, we consider specifically the case of resonance,
where all the concepts manifest more clearly. Finally, in Sec.
VI, we give a summary of the main results and provide an
index of all the important formulas and key figures of this
text. We conclude with a short overview of the continuation
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FIG. 2. (Color online) Schema of our system for the SS case:
self-assembled QDs in a semiconductor microcavity. The QD
sketched on the right is in SC with the cavity mode with coupling
strength g, while the one of the left is in WC. The electron-hole
pairs created by the incoherent pumping of the structure provide an
effective electronic pumping, P, of the SC dot, while the pumping
of the WC dot results in an effective cavity pumping P,, through
rapid conversion of the excitons into cavity photons.

of this work that replaces the bosonic emitter with a fermi-
onic one.

II. MODEL

Our model for the coupling of a QD with a single cavity
mode in the presence of incoherent and continuous pumping
is sketched in Fig. 2. One QD is strongly coupled to the
cavity mode with interaction strength g and is continuously,
and incoherently, excited by an electronic pumping P,
which, in the microscopic picture, is linked to the rate at
which electron-hole pairs relax into the dot. This rate is re-
lated in some way to the pumping exerted by the experimen-
talist. Because of the incoherent nature of this pumping, to-
gether with that of the damping, the off-diagonal elements of
the QD reduced density matrix (that hold the coherence) are
washed out in the SS. We also consider another type of
pumping, P,, that offers a counterpart for the cavity by in-
jecting photons incoherently at this rate. A likely factor to
account for such a term is the presence of many other QDs
that have been grown along with the one of interest. Those
only interact weakly with the cavity. In most experimental
situations so far, it is indeed difficult to find one dot with a
sufficient coupling to enter the nonperturbative regime.
When this is the case, all the other dots that remain in WC
become spectators of the SC physics between the interesting
dot and the cavity, and their presence is noticed by weak
emission lines in the luminescence spectrum and an in-
creased cavity emission. They are also excited by the elec-
tronic pumping that is imposed by the experimentalist, but
instead of undergoing SC, they relax their energy into the
cavity by Purcell enhancement or inhibition, depending on
their proximity with the cavity mode. This, in turn, results in
an effective pumping of the cavity.?

To model these two continuous and incoherent pumping,
we use the Lindblad terms £ p that substitute the annihilation
operator ¢ (standing for a or b) by the creation one ¢, and
vice versa, a procedure which is known to describe pumping

PHYSICAL REVIEW B 79, 235325 (2009)

terms in a quantum rate equation.”” Another approach with a
microscopic derivation of the pumping mechanism has been
recently investigated.>® The full Liouvillian in our case then
reads (again at zero temperature)

dp=Lp=ilp,H] (9a)
Ye t_ ot t
+ > 5 (2cpc" = c'ep—pc'c) (9b)
c=a,b
P, .
+ ?(2(3 pc—cc'p—pech). (9¢)
c=a,b

The microscopic derivation of line (9¢) follows from the
usual Born-Markov approximation.'> The case of electronic
pumping, for instance, is similar to the process of laser gain;
the medium requires an inversion of electron-hole popula-
tion, something that cannot be achieved by means of a
simple harmonic-oscillator heat bath. The actual process of
gaining an exciton in the QD involves the annihilation of an
electron-hole pair in an external reservoir out of equilibrium
(representing either electrical injection or the capture of ex-
citons optically created at frequencies larger than the ones of
our system) and the emission of a phonon, which carries the
excess of energy, to another one (which can be in thermal
equilibrium). A simple effective description of this nonequi-
librium process can be made by an inverted harmonic oscil-
lator with levels E,=—wp(p+1/2) maintained at a negative
temperature.” Since the raising operator for the energy de-
creases the number of quanta of this oscillator, the role of
creation and destruction operators is indeed reversed with
respect to the usual case of damping.

For the sake of generality, we introduce effective broad-
enings, which reduce to the decay rates in the SE case but get
renormalized by the pumping rate in the SS case,

Uap="7Yap (SE case), (10a)
Lip="Yap—Pap (SS case). (10b)
We shall also use thoroughly the combinations
’)/a * 7b Fa + Fb
y=—— and ['i=—"—. 11
Y+ 2 + 1 (11)

The narrowing of the linewidth in the presence of the pump-
ing term is a bosonic effect. In the case of a single harmonic
oscillator driven by pump and decay, the emission spectrum
is a Lorentzian line shape with full width at half maximum
given by y—P=v/(1+(n)). The linewidth narrows with the
number of particles in a way reminiscent of the Schallow-
Townes effect.’!

III. MEAN VALUES

Thanks to the relations (O)=Tr(Op) and d{0)
=Tr(0d,p)=Tr(OLp), we can obtain from Eq. (9) the single-
time mean values of interest for this problem by solving the
equation of motion of the coupled system,
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n, P, -, 0 ig —ig
ny Pb 0 - Fb - lg lg
2 = + . . .

Mg 0 ig -—ig —iA-2T, 0

Ny, 0 -ig g 0 iA-2T",
na
n

x| . (12)

Npg
Nap

where n.=(c’c) e R (for c=a,b) and n,={a'b)=n;, e C.
The SE case corresponds to setting P, ,=0 and providing the
initial conditions

ng =n,(0), n,? =m(0), and ’121, =n,(0). (13)

The solutions are heavy and are presented elsewhere.??

On the other hand, the SS case corresponds to setting the
time derivative on the left-hand side of Eq. (12) to zero and
solving the resulting set of linear equations. This yields

TP+ Py + P2+ (5)]

SS
fa = 4gr2 41,02+ (5] (142)
2 2 A2
ss_ 8 r,(p,+pP,) +PbI‘a(F++ 5) )
"= 4T3 4T (12 + ()% (14b)
SS _ %(’}/apb_ ’YbPa)(iF+_ %) (140)

o= gert a2+ (4]

Both photonic and excitonic reduced density matrices are
diagonal. They correspond to thermal distributions of par-
ticles with the above mean numbers.>* Behind their forbid-
ding appearance, Eqs. (14) enjoy a transparent physical
meaning, which they inherit from the semiclassical—and
therefore intuitive—picture of rate equations. When the cou-
pling strength between the two modes, g, vanishes, the solu-
tions are those of a source and sink problem for bosons

P,
V. — P,

a

n3(g=0)= : (15)

a

(idem for b throughout by interchanging a and b indexes)
i.e., they are solutions of dn,=—y,n,+P,(n,+1), featuring
the famous Bose stimulation effect, whereby the probability
of relaxation toward the final state is increased by its popu-
lation. In the general case where g # 0, the mean numbers
can also be written in the form of Eq. (15),

ng = yeff : (16)

(idem for a<—b), in terms of effective pump and decay rates

Q.

P=p,+
“ “ Tr,+T,

(P,+Py), (17a)
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eff Qa
= +
Ya =Y r,+r,

(Yot V) (17b)

with Q,, as the rate at which mode a exchanges particles with
mode b,

4( geff)z
=, 18
r, (18)
in terms of the effective coupling strength at nonzero detun-
ing,

o5 19

TRy "
Q, is a generalization of the Purcell rate )}a’ =4g%/y,, which
is the rate at which the cavity population decays in weak
coupling when v, yz > v,. From the point of view of mode
a, the coupling with mode b is both adding particles, con-
tributing to P, and removing them, contributing to . The
total effective decay is

L= - P =T, + 0, (20)

Note that the generalized Purcell rate O, appears in the same
way in both effective parameters in Eq. (17) due to the sym-
metry of the coupling (which both brings in and removes
excitations). The mean value of the coherence can also be
expressed in terms of these quantities,

ss_ 2 geff

YaPs = VoPa ib
Rab = Teff | qeeff e,
| I s

Farb

(21)

r
where ¢=arctan(g;).

The quantities defined in Egs. (17) and (20) are all posi-
tive when I',>0 (Q,>0) and all negative when I',<0 (if
there exists a solution for the steady state). The conditions
for the pumping terms P,,P, to yield a physical state (a
steady state) are therefore those for which the mean values
ngsb are positive and finite, implying

r,>o, (22a)

4(gM2>-T.,T,. (22b)

The first condition requires that pumps P,, P, are not simul-
taneously larger than their respective decay rates 7,, ¥,. The
second condition only represents a restriction when one of
the effective parameters, either I', or I', is negative. Then, it
reads explicitly 4(g")?>>|I",I',|. Note that out of resonance,
the pumping rates appear both in g and I',,T",, and there-
fore the explicit range of physical values for them needs to
be found self-consistently.

IV. CORRELATION FUNCTIONS AND SPECTRA

We now turn to the main goal of this paper, namely, the
luminescence spectrum of the system s(w). Physically, it is
the mean number of photons in the system with frequency w,
i.e., by definition
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s(w) = (@’ (w)a(w)). (23)

This is proportional to the intensity of photons emitted by the
cavity at this frequency [the direct exciton emission from its
recombination is described in a similar way by (b'(w)b(w))].
It will be more convenient, throughout, to deal with normal-
ized spectra,

S(w) =s(w)/J‘oc (a‘a)(t)dt, (24)
0

so that Eq. (24) is now the density of probability that a pho-
ton emitted by the system has frequency w. The Fourier
transform of a(w) relates the emission spectrum to a two-
time  correlator  through S(w):ﬁ [o¢a’(t)a(t,))
><ei‘”(’2"l)dt1dt2/fg(dfa)(t)dt, which after a change in vari-
ables can be expressed in terms of the so-called first-order
time autocorrelator,

GW(1,7) =(a"(Dalt + D), (25)

for positive time delay 7=7,—t;=0. All put together, this
yields the usual Fourier-pair relationship between the power
spectrum and the autocorrelation function,

S(w) =

— R f f GV(t,7)e' " drdr.
wf (aa)(r)dt 0
0

0

(26)

Equation (26) holds as such in the SE case. In the SS case,
care must be taken with cancellation of infinities brought by
the ever-increasing time 7. A technical but straightforward
procedure’? leads to the expression that explicitly gets rid of
the divergences—famously known as the Wiener-Khintchine
theorem*—that reads

11 ” )
$5(w) = ——5limR | GV(t, e "dr. (27)
0

7T}’la t—oo

Possibly, one could use a version of this expression that takes
into account experimental details such as the detector
linewidth.*

From now on, we shall refer with “SE” and “SS” the
expressions that apply specifically to the spontaneous emis-
sion and to the steady state, respectively, leaving free of in-
dex those that are of general validity. In some cases, as for
instance in Eq. (10), no index is required if it is understood
that P, are defined and equal to zero in the SE case. For
that reason, we shall leave I' free of the SE/SS redundant
index.

To obtain the spectra of a system whose dynamics is dic-
tated by Eq. (9), we therefore need to compute two-time
dynamics. This can be done thanks to the quantum regression
theorem, according to which, given a set of operators Cy,,
that satisfy Tr(Cy,,LQ)=2M,y Tr(Cp(2) for any opera-
tor ) (with My,,, € C), the equations of motion for the two-
time correlators read
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3T<Q(Z‘)C{ﬂ}(t + T)> = % M{n)\}<ﬂ(l‘)C{ﬂ}(I + T)> (28)
A

In the fully bosonic case, operators a”b" with {n}=(m,n)
e N constitute such a set with M defined by

r
My = — i(mw, + nw,) —m—"* —n—2, (29a)
mn 2 2
M wm =M wm =- lgn, (29b)
m+1,n—-1 n—1,m+1

and zero everywhere else. For the computation of the optical
spectrum, it is enough to consider the set of operators C
=a,b and Q=a" in Eq. (28). We obtain the equation

ay(tt+7)=Mv(t,t + 7) (30)
for the correlators
(a'(Dalt+ T)>)
t,t+71)= , 31
viti+ ) ((a*(r)b(r + 1) 3D
where
.
Mio Mo _lwa_? -8
M= 10 or | _
Mor Mo . . L,
10 01 —18 —lwp =7
2
(32)

The formal solution follows straightforwardly from v(z,r
+7)=eM"v(¢,1). Made explicit, it reads (at positive 7)

. 1 )
(d"(Dalt+ 7)) = Ee‘rﬂe"[‘”u‘(mﬂf

X{e®T(R +iT_ = A/2)n (1) — gn(1)]
+ e RTR = iT_+ A/2)n, () + gn (D]}
(33)
in terms of the complex (half) Rabi frequency

2
R:\/g2—<F_+i%) , (34)

which arises as a direct extension of the dissipationless case,
Eq. (6). For our discussion, it is convenient to decompose R
into its real and imaginary parts, R=R,+iR;. Out of reso-
nance, the Rabi frequency is a complex number with both
nonzero real and imaginary parts. On the other hand, at reso-
nance, it is either pure imaginary (in the WC regime) or pure
real (in the SC one). For this latter case, it is worth defining
a new quantity,

Ry=R(A=0)=g>-T? (35)

The real and imaginary parts of R are plotted in Fig. 3 as a
function of I'_/ g for various negative detunings. In the limit
of high detuning, |A|>max(g,I"_), regardless of WC or SC,
the real part becomes independent of the dissipation (decay
and pumping), R,~|A|/2, and the imaginary part becomes
R;=~ ¥ T'_. We can see in Fig. 3 that this sets an upper bound
for R;,
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2.0

FIG. 3. (Color online) Complex Rabi R/g, separated in its real
(a) and imaginary (b) parts, as a function of the decoherence pa-
rameter I'_/g for various detunings (A/g from —1.6, up, to 0, bot-
tom, by steps of 0.4). Solid black lines correspond to resonance.

IR <|T_|. (36)

A physical steady state is obtained for values of P,, P, that
ensure that the correlator of Eq. (33) converges to zero when
7—. Here, the condition follows from having a positive
total decay rate

T,-|R|>0. (37)

The first consequence of this condition is simply that T",
must be positive, as we already found with the analysis of
the mean values and wrote in Eq. (22a). With I', >0, the
other decay rate appearing in Eq. (33) is automatically ful-
filled (I',+|R,>0). On one hand, if T',, [',>0, Eq. (37) is
always true, as we know that |R;| <|I'_|<T, [from Eq. (36)].
This includes the spontaneous emission case where there is
no restriction in the parameters. On the other hand, if either
I, or I'), is negative, Eq. (37) represents a further limitation
for the pumping parameters. One can check that it is again
exactly equivalent to the condition we already found in Eq.
(22b). Therefore, the condition that the correlators are well
behaved is exactly the same as those that the populations are
positive and a physical steady state exists.

Using the result of Eq. (33) into the definition of Eq. (26),
we obtain the formal structure of the emission spectrum,

S(0) = 3 (L1 + £~ SHWHE' = £2) - RWHA' - ),
(38)

with £(w) and A(w) some Lorentzian and dispersive func-
tions whose features (position and broadening) are entirely
specified by the complex Rabi frequency [Eq. (34)], I, [Eq.
(11)], and the detuning A,

1
LY (w)=—
(w) (I, + R)* + w—(a)a—%IR,

12 _l w—(wa—%IR,)
A (w)_7T(F+iRi)2+[w—(wa—%IRr)]Z.
(39b)

We also introduced the weight W, a complex coefficient
given by
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We I'_+ z(% +gD)

, 40
R (40)
which we define in terms of still another parameter, D,
f (a"b)(t)dt
D= 000— (41)
f (d"a)(t)dt
0

Written in this form, Eqs. (38)—(41) assume a transparent
physical meaning with a clear origin for each term. The spec-
trum consists of two peaks (that we label 1 and 2), as is well
known qualitatively for the SC regime. These are composed
of a Lorentzian £ and a dispersive A part. The Lorentzian is
the fundamental line shape for a system with a lifetime, and
in the expression above, it inherits most of how the dissipa-
tion gets distributed in the coupled system, including the
so-called subnatural linewidth averaging that makes the
broadening at resonance below the cavity mode width.'® The
dispersive part originates from the coupling as in the Lorentz
(driven) oscillator. In our system, it stems from the driving of
one mode by the other because of the coupling. This decom-
position of each peak in such terms is therefore clear and
expected. The bare cavity mode will be taken as a reference
for the energy scales in the rest of the text (we set w,=0).

So far, all the results hold for both cases of SE and SS.
This shows that the qualitative depiction of SC is robust.
This made it possible to pursue it in a given experimental
system with the parameters of the theoretical models fit for
another. This has indeed been the situation with semiconduc-
tor results explained in terms of the formalism built for
atomic systems.

To be complete, the solution now only requires the bound-
ary conditions that are given by the quantum state of the
system. They will affect the parameter D, Eq. (41), that is
therefore the bridging parameter between the two cases. In
the next two sections, we address these two cases and their
specificities.

A. Case of spontaneous emission

In the case of spontaneous emission,'®?! where the system
decays from an initial state, the boundary conditions are sup-
plied for 7=0 by the initial values v(¢,?), i.e., the cavity
population, n,(f)={a’a)(t) and the coherence element 7,,(f)
=(a'b)(#). In turn, those are completely defined by the initial
conditions, Egs. (13). Although the analytical expressions for
these mean values as a function of time are cumbersome,3?
the D coefficient, Eq. (41), that determines quantitatively the
line shape assumes a (relatively) simpler expression,
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[&(yanh— ynl) = 2in0, (2 = ) )iy, - 5) + 282,930,
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To prepare the analogy with the SS case in the next section,
we also write the particular case when n’, =0,

_ Cyany— vn(ive - 3)
v+ n) +nly[ 2+ (5)7]

This is an important case as it is realized whenever the initial
population of one of the modes is zero, which is the typical
experimental situation. Note that in this case, DSE_ and there-
fore also the normalized spectra, does not depend on the two
populations independently but on their ratio only,

DSE

(43)

(44)

R

Il

3'3
ol o

B. Case of continuous incoherent pumping

In the case where the system is excited by a continuous
incoherent pumping, a steady state is reached and the bound-
ary conditions are given by the stationary limit, as time tends
to infinity, of the dynamical equation (whose solution is
unique). The D parameter, Eq. (41), is defined in this case as

DSS=n_csll§= %(Yapb—'ybPu)(iFJr—%)
ny> g (P, + P+ P T2+ (3)]

(45)

There is a clear analogy between Eq. (45)—that corresponds
to the SS—and Eq. (43)—that corresponds to SE when n),
=0. In this case, the spectrum can also be written in terms of
the ratio, counterpart of Eq. (44),

TABLE 1. Expression of D, Eq. (41), as a function of «, Egs.
(44) and (46), in the SE (with T~ ,,— v+, and n’,=0) and SS
cases. D embodies in the luminescence spectrum the influence of
the quantum state of the system. The latter is specified by the initial
condition in SE or the pumping/decay interplay in the SS.

ny P,
a=—t="4 D
n, Py
0 - §(1T+ - %) Y
g +T,[T2+ (3]}
(i = 3) (7= na)
O<as<e g T.(1 +a)+a1“,)[ri+(§)2]}
(IT+ - %) Ya
* 2gl",

@yl n) +ndy[ V4 (5)7]+ g v (590, + v, In,)

(42)

a= &, (46)
P,

in which case Egs. (43) and (45) assume the same expres-
sion, keeping in mind the definition of Egs. (10). Table T
displays this common expression of D in terms of «. The
limiting cases when a— 0 or « are also given. They corre-
spond to only photons or excitons as the initial state for the
SE or to the presence of only one kind of incoherent pump-
ing for the SS case.

The analogy and differences between DSE and DSS reflect
in the spectra SSE and S$SS. For the same «, they become
identical when the pumping rates are negligible as compared
to the decays, P, ;,<<7,,. In this case, where I'. , ,= ¥+ .4,
the SS system indeed behaves similar to that of the SE of
particles that decay independently and that are, at each emis-
sion, either a photon or an exciton, with probabilities in the
ratio a.

However, in the most general case, DSS depends on more
parameters than DSE. Moreover, the pumping rates P, ;, affect
558 not only through « and D®S but also in the position and
broadening of the peaks (given by I'. and R). Therefore, the
SS is a more general case, from which the SE with n°,=0
can be obtained, but not the other way around. On the other
hand, as seen in Table I, the SS case cannot recover the SE
case when n’, #0. Further similarities could be found if
cross Lindblad pumping terms were introduced in Eq. (9)
with parameters P, in analogy to the cross initial mean
value ngb, as done in, e.g., Ref. 36, but this describes a dif-
ferent system where polaritons can also be directly excited.
In the present one, none of the SE and SS cases comprises all
the possibilities of the other. Anyhow, an important fact for
the semiconductor community is that a SS with nonvanishing
pumping rates is out of reach of the SE of any initial state,
which has been the case studied in the literature so far,!0-2!
and that even in this limiting case, the effective quantum
state obtained in the SS should still be resolved self-
consistently, rather than assuming for « the particular case 0
or .

C. Discussion

With this exposition of the analytical expressions of the
luminescence spectra, and the discussion of their similarity
and distinctions that we have just given, the coverage of the
problem is complete. In order to give a more physical picture
of these abstract results, we shall in the rest of this paper
illustrate the implications that this bears in practical terms.
We consider the case of resonance for this purpose, for rea-
sons detailed in the next section. This will also allow us to
provide self-contained expressions for the spectra. Detuning
is however important for a nonlinear fitting of the experi-
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FIG. 4. (Color online) Strong-coupling steady-state spectra
(blue solid line) and their decomposition into Lorentzian (dotted
purple) and dispersive parts (dashed green) for various detunings
(A/g=0,1,3) with parameters of point (c) of Fig. 8: y,=3.8g, ¥,
=0.1g, P,=0.5g, P,=0.1g. The vertical black lines mark the posi-
tions of the bare modes (cavity at w,=0 and exciton at w,=-A),
showing the “level repulsion” of SC.

mental data.’”=*” The system lends itself naturally to a global
fitting of such data, i.e., constraining all fitting parameters
over the various detuning cases, where only the detuning is
allowed to vary, while optimizing them globally.*® This pro-
cedure provided excellent agreement between our theoretical
model and the experimental data in Ref. 37 and extending
this practice could tell much about which microscopic details
and/or which physical model rule a particular structure.*’

There is no difficulty in extending all the discussions that
follow to arbitrary detunings. For instance, Fig. 4 shows the
SS spectra and their mathematical decompositions into
Lorentzian and dispersive parts, as detuning is varied. Fig-
ures 4(b) and 4(c) are obtained using Egs. (38)—(41), and in
this particular case, expression (45) for D. Figure 4(a), the
case at resonance, can be obtained in the same way, but in
next section we shall bring all these results together in a
condensed expression when A=0 [Eq. (58)].

More importantly, as we shall soon appreciate, the reso-
nant case is the pillar of the SC physics. The main output of
the out-of-resonance case is to help identify or to character-
ize the resonance, for instance, by localizing it in an anti-
crossing or by providing useful additional constrains with
only one more free parameter in a global fitting. Even a
slight detuning brings features of WC into the SC system and
ultimately, when |A|>g, the complex Rabi frequency con-
verges into the same expression for both regimes (as shown
in Fig. 3). This is why we now consider the SC problem in
its purest form: when the coupling between the modes is
optimum.

V. STRONG AND WEAK COUPLING AT RESONANCE

Strong coupling is most marked at resonance, and this is
where its signature is experimentally ascertained, in the form
of an anticrossing. Fundamentally, there is another reason
why resonance stands out as predominant; this is where a
criterion for SC can be defined unambiguously in presence of
dissipation.

PHYSICAL REVIEW B 79, 235325 (2009)

10 210
R ¢

NRADE
L S

0 5 100 5 10 0
gt gt gt

gt
W

(=)

FIG. 5. (Color online) Time dynamics of the correlator
R{a'(H)a(t+ 1), cf. Eq. (33). Only the pattern of oscillations is of
interest here (lighter blues correspond to higher values). In all cases,
both the 7 and 7 dynamics tend to zero. Figures (a) and (b) show the
SE of an exciton and of an upper polariton, respectively, in a very
strongly coupled system (y,=0.2g and y,=0.1g). Figure (c) shows
the SE of an exciton in weak coupling (y,=5.9g). The oscillations
in 7, rather than in 7, are the mark of strong coupling.

WC and SC are formally defined as the regime where the
complex Rabi frequency at resonance, Eq. (35), is pure
imaginary (WC) or real (SC).

This definition, which takes into account dissipation and
pumping, generalizes the classification found in the litera-
ture. The reason for this definition is mainly to be found in
the behavior of the time autocorrelator, Eq. (33), that is, re-
spectively, damped or oscillatory as a result. The exponential
damping is the usual manifestation of dissipation, which de-
cays the correlations in the field, even when a steady state is
maintained. On the other hand, in the same situation of
steady averages (no dynamics) but now in SC, oscillations
with 7 are the mark of a coherent exchange between the bare
fields (photon and exciton).

In the literature, one sometimes encounters the confusion
that SC is linked to a periodic transfer of energy or of popu-
lation between the photon and exciton field, or that it follows
from a chain of emissions and absorptions. This is an incor-
rect general association as one can exhibit explicit cases with
apparent oscillations of populations that correspond to weak
coupling, or on the contrary, cases with no oscillations of
populations that are in SC. The two concepts are therefore
unrelated in the sense that none implies the other. This is
illustrated for the SE case in Figs. 5(a), 5(b), and 6 on one
hand, where the system is in SC, and in Fig. 5(c) on the other
hand, where it is in WC. In SS, there is no ¢ dynamics in any
case, so oscillations of populations are clearly unrelated to
weak or strong coupling. In SE, the distinction is clearly seen

0.6

304
wn
0.2

-2
(@) w/g

FIG. 6. (Color online) (a) Strong-coupling spectra S(S)E(w) and
(b) its corresponding mean number dynamics njE(t) for the sponta-
neous emission of three different initial states. In blue solid, one
exciton; in purple dashed, one photon; and in brown dotted, one
upper polariton. Parameters are y,=1.9¢ and 7y,=0.1g. Inset of (b)
is the same in log scale.
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lim ,(a*(t)a (t+1))/n

FIG. 7. (Color online) Dynamics of lim,_.{a’(f)a(t+7))/ njs,
Egs. (14a) and (33), for the steady state corresponding to points
(a)—(e) in Fig. 8. In the inset, the same in log scale. Solid lines [(b)
blue, (c) purple, and (d) brown] of SC feature oscillations of the
correlator, as the mark of SC. Dashed lines [(a) green and (e) blue]
correspond to weak coupling. Note that although the blue dashed
line (e) appears to be similar to other SC lines, it does not oscillate
in the log scale, where it only features a single local minimum. In
the same way, the brown line (d) that seems not to oscillate actually
features an infinite set of local minima, as is revealed in the log
scale.

in Fig. 5 where both the # and 7 dynamics are shown in a
contour plot in the case where the system is initially prepared
as an exciton, (a) and (c), or as a polariton, (b). In the polar-
iton case, the dynamics in ¢ is simply decaying (because of
the lifetime), while it is clearly oscillating in 7, where the
proper manifestation of SC is to be found. The ¢ decay is not
exactly exponential because in the presence of dissipation,
the polariton is not an ideal eigenstate anymore (the larger
the dissipation, the more the departure). However this effect
in SC is so small that it only consists of a small “wobbling”
of the 7 contour lines. On the other hand, the exciton, (a),
that is not an eigenstate features oscillations both in the ¢
dynamics (the one often but unduly regarded as the signature
of SC), as well as the 7 dynamics. In stark contrast, the
exciton in WC, (c), bounces with ¢. This, that might appear
as an oscillation, is not as it happens only once and is
damped at long times. This behavior is shown quantitatively
in Fig. 6 for SC, where the population n,(z) is displayed for
the SE of an exciton (blue solid), a photon (purple dashed)
and an upper polariton (brown dotted), respectively, along
with the luminescence spectrum that they produce (detected
in the cavity emission). Here it is better seen how, for in-
stance, the polariton decay is wobbling as a result of the
dissipation that perturbs its eigenstate character and leaks
some population to the lower polariton. More importantly,
note how very different the spectra are, depending on
whether the initial state is a photon or an exciton, despite the
fact that the dynamics is similar in both cases (see the inset
in log scale of their respective populations). The PL spec-
trum observed in the cavity emission is much better resolved
when the system is initially in a photon state than it is when
the system is initially in an exciton state. The splitting is
larger and the overlap of the peaks smaller in the former
case. This will find an important counterpart in the SS case.

Figure 7 shows the 7 dynamics in the SS (when the ¢
dynamics has converged and is steady) for five cases of in-
terest to be discussed later (in Fig. 8). A first look at the

PHYSICAL REVIEW B 79, 235325 (2009)

dynamics would seem to gather together a group of two
curves that decay exponentially to good approximation (and
remain positive as a result) and another group of three that
assume a local minimum. The correct classification is the
most counterintuitive in this regard, as it puts together the
dashed lines on one hand and the solid on the other. The
mathematical reason for this classification is revealed in the
inset, where the same dynamics is plotted in log scale. The
dashed (solid) lines correspond to parameters where the sys-
tem is in WC (SC) according to the definition, i.e., to values
of R that are imaginary on one hand and real on the other. In
log scale, this corresponds, respectively, to a damping of the
correlator, against oscillations with an infinite number of lo-
cal minima. Note that the blue dashed line features one local
minimum, which does not correspond to an oscillatory—or
coherent-exchange—behavior of the fields but rather to a jolt
in the damping. These considerations that may appear ab-
stract at this level will later turn out to show up as the actual
emergence, or not, of the split (dressed) states.

We now return to the general (SE/SS) expression for the
spectra, Eq. (38), that, at resonance in SC, simplifies to

Siw)= L1+ £)- 5 e

2R,

where we used the definition for the (half) Rabi frequency at
resonance, Eq. (35), and

1 r
Ly (w)=— - , 48
() 72+ (0 * Ry)? (482)
1 *R
Al (@) = =50 (48b)

7Tr3_+ (0) + Ro)z.

In the weak-coupling regime, with R, being pure imaginary
(g<|T_|), the positions of the two peaks collapse onto the
center, w,=w,=0. Defining iR, =R, with R,=\I>—g? be-
ing a real number, the general expression for the spectra
rewrites as

1 I'_-g3{D 1 I'_-g3D
sg‘(w)=<—+—‘ A 0}).cjv+<—-—‘ st °}>,c3v
2 2R, 2 2R,
gﬂi{DO} 1 2
- - 4
IR, (AL - A2), (49)

with the Lorentzian and dispersive contributions now given
by

1 I', =R
ELZ — _%’ 50
w (@) 7, *R,)*+ o’ (50a)
12 1 w
Ay (0)=— (50b)

7w, =R, + o*

Before addressing the specifics of the SE and SS cases, it is
important to note that at resonance, the Lorentzian and dis-
persive parts [Eqs. (48) and (50)] are invariant under the
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FIG. 8. (Color online) Phase space of the steady-state strong/weak coupling as a function of P,/g and v,/g for the parameters v,
=0.1g and P,=0.5g. The red lines delimit the region where there is a steady state [Egs. (62) and (63)]. The blue line, Eq. (64), separates the
strong (in shades of blue) from the weak (shades of red) coupling regions. The dotted black line, Eq. (65), separates SC and WC regions in
the absence of pumping. The brown line, Eq. (66), separates the regions where one (dark blue) or two (light blue) peaks can be resolved in
the luminescence spectra. This defines three areas in the SC region: (1) two peaks are resolved in the spectra, (2) the two peaks cannot be
resolved and effectively merge into one, albeit in SC, and (3) SC is achieved thanks to the pump P, (with one or two peaks visible depending
of the overlap with the light or dark area) despite the large dissipation that predicts WC according to Eq. (59). In the same way we can
distinguish three regions in weak coupling: (I) standard WC, (II) SC with a two peaked spectrum, and (III) WC due to pumping P,,. The
surrounding figures (a)—(e) show spectra (filled) from these regions and their decomposition into Lorentzian (green) and dispersive (brown)
parts. Parameters correspond to the points in the inset: (a) y,=3.8¢ and P,=g, (b) y,=3.8¢ and P,=0.5g, (c) y,=3.8¢ and P,=0.1g, (d)
v,=4.49¢ and P,=0.1g, (e) y,=4.8¢ and P,=0.1g. Observe how, in SC, two eigenstates have emerged, even in the cases—like in
(b)—where they are not seen in the total spectrum. In the same way, in WC, all the emission emanates from the origin, although a two-peak
structure can arise as a result of a resonance, also centered at the origin.

exchange of indexes a<« b. Therefore, the photon and the the initial states considered are independent states of photons
exciton spectrum are composed of the same line shapes dif- or excitons (not a quantum superposition), where indeed
fering in the prefactor that weighs them in Eq. (47). nY, =0.192! In these cases,

A. Case of spontaneous emission ‘%(7,;12 — 1)

D= , (51)
In the most general case of SE, the DSE coefficient at 0 gz(n2+n2) +n27by+
resonance, DSE, is a complex number. If the initial condition
further fulfils %n2b=0, it becomes pure imaginary. Usually, which yields the following expression for the spectrum:
|
YA 2 Y\ 2.0, %, 0 2
1 e + = n,+— +n w
SSE(Q)) - = 2 (g 4 )( b 4 a ) (52)

77[“’4 + wz(@ - 282) + (82 + %n)z][gz(ng +nd) + ng'yb%] .
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The SE spectrum of exciton observed in the leaky modes is
obtained from Eq. (52) by exchanging the indexes a < b. We
illustrate this with the two particular cases that follow.

The typical detection geometry for the spontaneous emis-
sion of an atom in a cavity consists in having the atom in its
excited state as the initial condition and observing its direct
emission spectrum. In this case the role of the cavity is
merely to affect the dynamics of its relaxation that is oscil-
latory with the light field in the case of SC. This case corre-
sponds to n)=1 and n’=n’, =0 in Eq. (52) with a«b. This
gives!'®

Yt YoY% \( Ya
55wy = - . f(82+7)(7+w2) y
a+ ll+ a
7ot + 02 B2 - 2g2) + (g2 4 5,252 (g2 + 22)
(53)
In the semiconductor case, one would typically still have in
mind the excited state of the exciton as the initial condition,
but this time, this is the cavity emission that is probed. The
initial condition is therefore the same as before but without
interchanging a and b in Eq. (52), which reads in this case
207, + 1) (48 + ¥aYs)
160" -4’ (88” = Yo = ) + (48 + v )
(54)

1
So(w)=—
v

The difference in the line shape due to the initial quantum
state is seen in Fig. 6. The visibility of the line splitting is
much reduced in the case of an exciton in SC which SE is
detected through the cavity emission than in the case of a
photon. With a polariton as an initial state, only one line is
produced.

Again, by symmetry, interchanging a < b in Egs. (53) and
(54) corresponds to the SE of the system prepared as a pho-
ton at the initial time and detected in, respectively, the cavity
emission on one hand [Eq. (53), a«<»b], and in the leaky
mode emission on the other hand [Eq. (54)]. In the latter
case, the spectrum is invariant under the exchange a«b.
Figure 6 also hints to the changes brought by the detection
channel (direct emission of the exciton or through the cavity
mode).

If n’=0 or n)=0 (in which case n’,=0), the normalized
spectra do not depend on the nonzero value ng or ng. That is,
one cannot distinguish in the line shape the decay of one
exciton from that of two, or more. In the more general case,
when ngb # 0, the peaks can be differently weighted. For in-
stance, starting with an upper polariton |U)=(|1,0)
+]0,1))/V2 (n’=n)=n?,=1/2) gives rise to a dominant
upper-polariton peak (labeled 2 in the above equations, as
seen in the brown dotted line in Fig. 6). One can classify the
possible line shapes obtained for various initial states. For
instance, as we have just mentioned, the normalized spec-
trum of |0,n) as an initial state is the same whatever the
nonzero n, which is not unexpected from a linear model.
From the previous statement, the same spectrum is also ob-
tained for a coherent state or a thermal state of photons, or
indeed any quantum state, as long as the exciton population
remains zero. In the same way, the PL spectrum of the prod-
uct of coherent states in the photon and exciton fields, |z)|z")
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with z=z" € C*, is the same as that of a polariton state |U),
although both are very different in character: a classical state
on one hand and a maximally entangled quantum state on the
other.

B. Case of continuous incoherent pumping
In the SS, at resonance, DSS is pure imaginary,

5(¥.Py = vpP,)
gz(Pa+ Pb) + PuFbF+’

D =i (55)
and the term that consists in the difference of Lorentzians in
Eq. (38) disappears, J{W}=0. As a result, the two peaks are
equally weighted for any combination of parameters,

SS
Sgs(w)=l(/li +£§)+ M(Ai_#‘l?)- (56)
2 2R,
The only way to weigh one of the peaks more than the other
in the SS of an incoherent pumping would be to pump di-
rectly the polariton (dressed) states, as the case in higher-
dimensional systems where polariton states with nonzero
momentum relax into the ground state’® or in the 0D case
when cross pumping is considered.?® In the present model,
however, such terms are excluded. The two peaks of the Rabi
doublet, composed of a Lorentzian and a dispersive part, are
both symmetric with respect to w,=w,=0. Only if J{D3"}
=I"_/ g, the spectrum of Eq. (56) consists exclusively of two
Lorentzians. The parameters that correspond to this case are

those fulfilling either g’>= P:i"PanF_ or I',=0. The second
case corresponds to the limiting case of diverging popula-
tions, where the SC becomes arbitrarily good. Note that these
spectra, composed of Lorentzians only, are the same in the
exciton or photon channel of emission due to the invariance
under the exchange a <« b. In the most general case, the dis-
persive part has a small quantitative contribution, bringing
closer or further apart the maxima and thus altering the ap-
parent magnitude of the Rabi splitting. In some cases, as we
shall discuss, it can however contrive to blur the resolution
of the two peaks. A single peak is then observed even though
the modes split in energy. As for the weak-coupling formula,
it simplifies to

1 F_ -8 j{Do})

SW = —
0(@) (2 TR

cly

w

(l - 83{D0}>£2
2 2R v

w w

(57)

losing completely the dispersive contribution. Both decom-
positions, Egs. (56) and (57), have been given to spell out the
structure of the spectra in both regimes. The unified expres-
sion that covers them both reads explicitly

1 8¢2P, + 2P, (4? +T7})
'n'ngs 160" — 40*(8g° - 1—‘5 - Fi) +(4g”+ I I,)>
(58)

It is the counterpart for SS of Eq. (52), for SE. The case of
excitonic emission can also be obtained, as for SE, exchang-
ing the indexes a < b.

S5 (w) =
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C. Discussion

The spectra in the semiconductor case that are probed at
negligible electronic pumping (P, << 1) with no cavity pump-
ing (P,=0) are in principle described by the same expression
as that of the SE case used in the atomic model. In practice,
however, both of these conditions can be easily violated. The
renormalization of vy, with P, brings significant corrections
well in the regime where n,, n,<<1, and one could think that
the pump is negligible. For instance, for parameters of point
(c) in Fig. 8 with P,=0, the rate P, that is needed to bring a
100% correction to 7, yields, according to Egs. (14a) and
(14b), average populations much below unity, namely, 5>
~(0.026 and n,fS%O.lZl. By the time n; reaches unity, with
n, still one fourth smaller, the correction on the effective
decay rate has became 400%. Because of thermal fluctua-
tions in the particle numbers, for these average values, the
results are already irreconcilable with a SE emission case.
They are, as we shall see in part II of this work,!3 also irrec-
oncilable with a fermion model. As this is n, which is pro-
portional to the signal detected in the laboratory, the elec-
tronic pumping must be kept very small so that corrections to
the effective linewidth can be safely neglected. As regimes
with high occupation numbers are reached, the renormalized
I's become very different from the bare 7s in this model.

Second, even in the vanishing electronic pumping limit, it
must be held true that P, is zero. Even if only an electronic
pumping is supplied externally by the experiment, the pump-
ing rates of the model are the effective excitation rates of the
cavity and exciton field inside the cavity, and it is clear that
photons get injected in the cavity in structures that consists
of numerous spectator dots surrounding the one in SC (cf.
Fig. 2). Although most of these dots are in WC and out of
resonance with the cavity, they affect the dynamics of the SC
QD by pouring cavity photons in the system. In the steady
state, following our previous discussion, this corresponds to
changing the effective quantum state for the emission of the
strongly coupled QD. As we shall see in more detail in what
follows, this bears huge consequences on the appearance of
the emitted doublet, especially on its visibility.

To fully appreciate the importance and deep consequences
of these two provisions made by the SS case on its SE coun-
terpart, we devote the rest of this section to a vivid represen-
tation in the space of pumping and decay rates. Now that it
has been made clear what the relationship between the SE
and the SS cases is, we shall focus on the latter that is the
adequate general formalism to describe SC of QDs in micro-
cavities.

In presence of a continuous incoherent pumping, the cri-
terion for SC—from the requirement of energy splitting and
oscillations in the 7 dynamics that we have discussed
above—gets upgraded from its usual expression'®

g> v (59)
to the more general condition
g>|T_|. (60)

The quantitative and qualitative implications and their extent
are shown in Fig. 8, where we have fixed the parameters
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v¥,=0.1g and P,=0.5¢g, and outlined the various regions of
interest as P, and v, are varied (central panel). This choice
of representation allows us to investigate configurations that
can be easily imprinted experimentally in the system—by
tuning P, in cavities that have different quality factors (in-
versely proportional to 7,,).

The red lines enclosing the filled regions in the central
plot, delimit a frontier above which the pump is so high that
populations diverge (there is no steady state). This is given
by the equivalent conditions that we derived in two different
ways, Egs. (22) and (37). At resonance, they simplify to

r,>o0, (61a)

482> -T,T,. (61b)

In the SC regime, the first condition is sufficient, R;=0, and
the total decay rate for the system is given only by I', [con-
dition (61b) is therefore automatically fulfilled]. The equa-
tion for the border of the physical region in SC reads

P,=v,+v,— P, (boundary of SC). (62)

In the WC regime, condition (61b) becomes restrictive and
the limiting value for P, reads

2

Py=y+0p=7+ (boundary of WC),

a a

(63)

and can be interpreted as the point where the effective decay
rate for mode b (direct losses plus its Purcell emission
through mode a) is exactly counterbalanced by the effective
pump [szf=0, from Eq. (20)].

The main separation inside that region where a SS exists
is between SC (in shades of blue, inside the triangle) and WC
(in shades of red, on its right elbow). The blue solid line that
marks this boundary is specified by g=|T"_|, i.e., by

Py=4g =y, + v
+ P, (SS transition between SC and WC).
(64)

The dashed vertical black line, specified by g=|v.|, i.e., by

(SE transition between SC and WCQC),
(65)

Ya=48+ Y

corresponds to the standard criterion of SC (without incoher-
ent pumping).

The light-blue region, labeled 1 in Fig. 8, corresponds to
SC as it is generally understood. The luminescence spectrum
shows a clear splitting of the lines. The dark-blue region,
labeled 2, corresponds to SC, according to the requisite that
Ry must be real, but with a broadening of the lines so large
that in the luminescence spectrum, Eq. (56), only one peak is
resolved. This region is delimited by the brown line, which is
the solution of the equation d*S(w)/dw?|,-=0, i.e., no con-
cavity of the spectral line at the origin. From this condition
follows the implicit equation

235325-13



LAUSSY, DEL VALLE, AND TEJEDOR

1
05 ............................
< (b) " (a)
bb Y
3 0 BN
_0.5 ........................................
-1
0 0.5 i ]

Py/g

FIG. 9. (Color online) Rabi splitting at resonance (dotted blue)
given by £R(Ry), Eq. (35), and the observed position of the peaks
in the PL spectra (solid red) as a function of P,/g. Parameters are
those of the line of points (a)—(c) of Fig. 8: v,=3.8¢, 7,=0.1g,
P,=0.5g. The corresponding P, are marked for those points.

(3T, -T)g*+(T_-T,)%+¢|Dy|(g*~T2+3T3) =0
(66)

that yields two solutions, only one of which is physical. The
other one is placed on the red line I',=0, where the system
diverges and the Rabi peaks become delta functions
8w * g). Note that this line extends into the WC region, as
we shall discuss promptly. The distinction between line split-
ting, as it results from the emergence of new dressed states in
the SC, and the observation of two peaks in the spectrum, is
seen clearly in Fig. 9, where the two are superimposed and
seen to differ greatly even at a qualitative level for most of
the range of parameters, coinciding only in a narrow region.
The doublet, as observed in the luminescence spectrum, col-
lapses much before SC is lost. Any estimation of system
parameters, such as the coupling strength, from a naive in-
terpretation of the peak separation in the PL spectrum will
most likely be off by a large amount.

The last region of SC, labeled 3, is that specified by 4g
+v,<7y,<4g+7y,+P,—P,, i.c., that which satisfies Eq. (60)
but violates Eq. (59), thereby being in SC according to the
more general definition that takes into account the effect of
the incoherent pumping but, according to the conventional
criterion, is in WC. For this reason, we refer to this region as
of pump-aided strong coupling. This is a region of strong
qualitative modification of the system that should be in WC
according to the intrinsic system parameters (7,,7;,g) but
restores SC thanks to the cavity photons forced into the sys-
tem.

We now consider the other side of the blue line that dis-
plays the counterpart behavior in the WC. Region I is that of
WC in its most natural expression. Region II, in light, is the
extension into WC of featuring two maxima in the emission
spectrum. In this case, this does not correspond to a line
splitting in the sense of SC where each peak is assigned to a
renormalized (dressed) state, but rather to a resonance of the
Fano type that is carving a hole in the single line of the
weakly coupled system. In this region, one needs to be cau-
tious not to read SC after the presence of two peaks at reso-
nance. Finally, region III is the counterpart of region 3 in the
sense that, according to the conventional criterion for the
system parameters [Eq. (59)], this region should be in SC
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when in reality the too-high electronic pumping has bleached
it.

In the inset of Fig. 8, central panel, we reproduce the
diagram to position the five points (a)—(e) in the various
regions discussed, for which the luminescence spectra are
displayed and decomposed into their Lorentzian (green lines)
and dispersive (brown) contributions, Egs. (48) and (50).
Case (c), at the lower-left angle, corresponds to SC without
any pathology nor surprise; the doublet in the luminescence
spectrum—although displaced in position as shown in Fig.
9—is a faithful representation of the underlying Rabi split-
ting. Increasing pumping brings the system into region 2
where, albeit still in SC, it does not feature a doublet any-
more. The reason why is clear on the corresponding decom-
position of the spectrum, Fig. 8(b), with a broadening of the
dressed states (in green) too large as compared to their split-
ting. Further increasing the pump brings it out of the SC
region to reach point (a), where the two Lorentzians have
collapsed on top of each other. This degeneracy of the mode
emission means that the coupling only affects perturbatively
each mode. As a result, the dispersive correction has van-
ished, and the spectrum now decomposes into two new
Lorentzians centered at zero, with opposite signs [Eq. (57)].

Back to point (c), now keeping the pump constant and
increasing vy,, we reach point (d). It is still in SC, although
the cavity dissipation is very large (more than four times the
coupling strength) for the small value of 7, considered. Its
spectrum of emission shows, however, a clear line splitting
that is made neatly visible thanks to the cavity (residual)
pumping P,. Note that the actual separations of the two
peaks are much larger than that of the dressed states. Increas-
ing further the dissipation eventually brings the system into
WG, but in region II where again due to P, 0, the spectrum
remains a doublet. In Fig. 8(e), one can see, however, that
there is no Rabi splitting and that the two peaks arise as a
result of a subtraction of the two Lorentzians centered at
w,=0 [see the WC spectrum decomposition in Egs. (50) and
(57)]. Varying detuning for the system of point () even leads
to an apparent anticrossing. Note that the transition from SC
to WC is always smooth in the observed spectra, although it
is an abrupt transition in terms of apparition or disappearance
of dressed states (due to a change in sign in a radical in the
underlying mathematical formalism).

If P, is set to zero, i.e., in the case of a very clean sample
with no spurious QDs other than the SC-coupled one, which
experiences only an electronic pumping, region 3 of SC and
I of WC disappear.*® The former is indeed the result of the
residual cavity photons helping SC. The “pathology” in WC
of featuring two peaks at resonance also disappears, but most
importantly, region 2 considerably increases inside the “tri-
angle” of SC, meaning that the parameters required so that
the line splitting can still be resolved in the luminescence
spectrum now put much higher demands on the quality of the
structure. This difficulty, especially in the region where P,
< g, follows from the “effective quantum state in the steady
state” that we have already discussed. The presence of a
cavity pumping, even if it is so small that no field-intensity
effects are accounted for, can favor SC by making it visible,
indeed by merely providing a photonlike character to the
quantum state. This is the manifestation in a SS of the same
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FIG. 10. (Color online) Phase space of SC/WC as a function of
the pumps P,/g and P,/ g for fixed decay parameters y,=3.8¢ and
v,=0.1g. As in Fig. 8, the red lines mark the physical regions and
the blue one the SC (blue shades)/WC (red shades) transition, with
the same regions 1 and 2 of SC and III of WC, also with the points
(a)—(c), of Fig. 8. In the inset, zoom of the low-pump region, show-
ing the importance of both the angle, arctan(1/«), and the magni-
tude, VP§+PZ, of a given point in the diagram.

influence that was observed in the SE; the luminescence
spectrum of a photon as an initial state of the coupled system
is more visible than that of an exciton, keeping all param-
eters otherwise the same (see Fig. 6).

A second useful picture to highlight this last point is that
where the various regions are plotted in terms of the pump-
ing rates, P, and P, (see Fig. 10, for lines (a)—(c) with 7,
=3.8¢ in Fig. 8). The angle of a given point with the hori-
zontal, linked to a~'=P,/ P, defines the excitonlike or pho-
tonlike character of the SS established in the system, and
thus determines the visibility of the double-peak structure of
SC. This is, at low pumpings, independent of the magnitude
VPZ+P;, as the brown line defined by Eq. (66) is approxi-
mately linear in this region. This shows the importance of a
careful determination of the quantum state that is established
in the SS by the interplay of the Eumping and decay rates,
through Eq. (12). The magnitude \ P2+ P}, on the other hand,
affects the splitting 2R, and the linewidth 2I",. In order to
have a noticeable renormalization, the pumps must be com-
parable to the decays. On one hand, the Rabi frequency can
be affected in different ways by the pumpings, depending on
the parameters. If I',=I",, there is, in general, no effect of
decoherence on the splitting of the dressed states, showing
that in this case there is a perfect symmetric coupling of the
modes into the new eigenstates (although the broadening can
be large and spoil the resolution of the Rabi splitting any-
way). If they are different, for example in the common situ-
ation that y,—vy,> P,—P,, the Rabi increases with increas-
ing P,—P,. On the other hand, the linewidth 2I",=(y,+7,
—P,—P,)/2 presents clear bosonic characteristics; it in-
creases with the decays but narrows with pumping.3! The
intensity of the pumps also affects the total intensity of the
spectra, which is proportional to nzs through 7y, and the in-
tegration time of the apparatus. Here, however, we have fo-
cused on the normalized spectra (i.e., the line shape).

VI. SUMMARY AND CONCLUSIONS

In conclusion, we have brought under a unified formalism
the zero-dimensional light-matter interaction between
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bosons, both in the weak coupling (WC) and strong coupling
(SC), for the two cases of spontaneous emission (SE) of an
initial state and emission under a steady state (SS) main-
tained by an incoherent continuous pumping. While the SE
case for some particular initial conditions (excited state of
the atom) and configurations (resonance, direct emission) has
been a pillar of SC in cavity quantum electrodynamics
(cQED) of atoms in cavities, the extensions that we provided
here to include a continuous and incoherent pumping are
suitable to describe the recent field of cQED in semiconduc-
tor heterostructures. Together, they merge into an elegant and
complementary theoretical edifice.

The main results of this paper are to be found in Eqgs.
(38)—(41) that provide the analytical expression for the cav-
ity emission spectra of a system whose specificities—such as
whether it corresponds to SE or the SS established by an
incoherent continuous pumping—are provided by a param-
eter D, which, in the first (SE) case, is given by Eq. (42), and
in the second (SS), by Eq. (45). These formulas, which allow
for an arbitrary detuning between the bare modes, reduce to
more self-contained expressions at resonance, namely, Eq.
(52) for SE and Eq. (58) for SS. The resonance case allows
an unambiguous definition of SC, depending on whether the
complex Rabi frequency, Eq. (34), is pure imaginary (WC)
or real (SC). This corresponds, in turn, to a damping or to
sustained oscillations of the time autocorrelation of the
fields. This is completely independent of the dynamics of the
populations. SC is characterized by the emergence of new
eigenstates, with different energies, whereas in WC, the en-
ergies remain degenerate. There is no, however, one-to-one
mapping of this splitting of the energies with the lines ob-
served in the luminescence spectrum. All cases can arise; one
or two peaks can be observed at resonance both in WC and
SC. In the SC case, one peak only is observed when the
energy splitting is too small as compared to the broadening
of the lines, whereas in the WC, two peaks are seen as a
result of a resonance carving a hole in a single line, giving
the illusion of a doublet (and indeed of an anticrossing when
detuning is varied). For that reason, an understanding of the
general picture is required to be able to position a particular
experiment in the space of parameters, as was done in Figs. 8
and 10, rather than to rely on a qualitative effect of anticross-
ing at resonance. Figure 9 shows how loosely related are the
observed line splitting in the luminescence spectrum (solid
red) and the actual energy splitting of the polariton modes
(dressed states, in dotted blue). The various situations that
may arise are illustrated and discussed in Fig. 8. The respec-
tive effects of the angle and the distance to the origin in the
P,, P, parameter space are shown in Fig. 10; the angle ac-
counts for the effective quantum state that imparts on the
visibility of the splitting in the spectrum, while the magni-
tude accounts for bosonic effects such as line narrowing and
field-intensity renormalization of the Rabi splitting.

This work addresses the case of bosonic excitons with a
linear model that also describes the so-called linear limit of
vanishing excitation for a two-level exciton when it is far
from saturation. As such, it also contains a lot of the physics
of the ground state of quantum well excitons in planar cavi-
ties, although in this case, a direct polariton pumping must
be taken into account, as particles are injected directly into
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the ground state by scattering of other high-energy
polaritons.® On the contrary, in our present scheme, the ex-
citation is in terms of the bare modes, through phonon-
assisted scattering of electron-hole pairs into the QD for the
electronic pumping, P, or via Purcell emission of weakly
coupled spectator dots into the cavity mode for the cavity
pumping, P,. A more natural extension of this work is to
consider fermionic QDs that do not admit more than one
exciton. In this case, the equations of motion for the correla-
tors are not closed, and only semianalytical results are avail-
able. The structure of the spectra—that in the bosonic case
decompose as a Lorentzian and a dispersive line for each
peak—becomes that of an infinite series of lines, tightly
grouped together, to give rise to multiplet structures in a
wide variety of configurations. This fermionic case corre-
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sponds to mapping the Jaynes-Cummings ladder to an exact
luminescence spectrum, in much the same way that we have
been doing with the Rabi doublet in this text. This case,
which is of crucial importance for the study of nonlinearity
of genuine (two levels) QDs in semiconductor microcavities,
is the subject of the second part of our work.!3
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